
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Determining the Efficiency Limits of KMP and 
Boyer-Moore Algorithms Based on Alphabet Size in 

Text 
 

Sakti Bimasena - 13523053 
Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: sbimasena@gmail.com , 13523053@std.stei.itb.ac.id   
 

 
Abstract—This paper experimentally examines the efficiency 

limits of Knuth-Morris-Pratt (KMP) and Boyer-Moore (BM) 
string matching algorithms, focusing on the impact of varying 
alphabet size. Through controlled experiments with different 
alphabet sizes (from 2 to 95 printable ASCII characters) and 
pattern lengths (5 to 50), performance was measured by execution 
time on fixed-length texts. Results show KMP's efficiency remains 
largely consistent regardless of alphabet size. However, Boyer-
Moore's performance significantly improves as alphabet size 
increases, driven by its Bad Character Heuristic. While KMP may 
be competitive in very small alphabets with short patterns, Boyer-
Moore consistently demonstrates superior efficiency for larger, 
more practical alphabets and longer patterns. These findings offer 
empirical guidance for algorithm selection based on data 
characteristics. 

Keywords—boyer-moore; knuth-morris-pratt; string matching; 
alphabet size; efficiency 

I.  INTRODUCTION 
A wide variety of computational programs are based on 

string matching, which is the task of finding a shorter pattern in 
a longer text. An effective string matching algorithm is very 
important for many applications, including the common search 
function in text editors and web browsers, with specialized 
work in bioinformatics (like DNA sequence analysis), network 
intrusion detection, and data compression. Even though brute-
force technique exists, it is very ineffective in handling large 
datasets. That is why complex algorithms like Knuth-Morris-
Pratt (KMP) and Boyer-Moore have been developed. 

The KMP Algorithm offers a deterministic left-to-right 
scanning method that is known for its worst-case linear time 
complexity of O(m+n) with m being the length of the pattern an 
n being the length of the text. This algorithm avoids 
unnecessary character comparisons and backtracking when a 
mismatch occurs by preprocessing the text into an LPS array 
(Longest Proper Prefix Suffix). Because of that, KMP is very 
strong, especially when working with patterns that show a 
significant amount of repetition[1]. 

On the other hand, Boyer-Moore is praised with its amazing 
performance which oftentimes reach sublinear time 

complexities on average. The poor character and good suffix 
rules are two effective heuristics used in its right-to-left 
comparison. When there is a mismatch, this criteria allows BM 
to make longer jumps (shifts) throughout the text, oftentimes 
avoiding long parts that do not fit the pattern. Its heuristics excel 
for applications that need a large alphabet and natural language 
texts. 

While KMP is robust against worst-case scenarios, BM 
typically excels in average-case scenarios, especially when the 
alphabet is large and the pattern is long. The worst case and 
average case complexities of these algorithms are usually the 
main focus of the majority of classical analyses. However, one 
key factor that receives less attention in classical theory is the 
size of the input alphabet. In real-world applications, the 
alphabet may vary greatly, from small sets such as {A, C, G, T} 
in DNA sequences to extended ASCII or Unicode in 
multilingual texts. The number of unique characters in the 
alphabet can significantly influence the practical behavior of 
string matching algorithms, particularly those like BM that rely 
on character-based heuristics. 

This paper aims to answer how alphabet size within a text 
and pattern effect the efficiency of KMP and BM algorithms, 
by doing a comparative analysis of the two algorithms by 
running them on a number of tests, carefully controlling the 
input alphabet size. With the result being a measurement of key 
performance metrics such as runtime and the number of 
character comparisons to uncover efficiency boundaries not 
apparent from complexity theory alone. 

II. THEORETICAL FOUNDATION 

A. String Matching Problem 
The string matching problem is a task that involves finding 

the first occurrence of pattern P of length m within a text T of 
length n, with the assumption that m is far smaller then n and 
both strings are composed of characters from a common 
alphabet. This operation is critical in many domains, such as 
text editing, search engines, data compression, and 
bioinformatics. An occurrence of P in T is defined by a shift s, 

mailto:sbimasena@gmail.com
mailto:13523053@std.stei.itb.ac.id


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

such that 0 £ s £ n -m, and T[s..s + m -1] = P[0..m - 1]. That is, 
for all j from 0 to m – 1, T[s + j] = P[j][2]. 

This problems naive solution would be to check all potential 
alignment of P in T, which leads to a worst-case time 
complexity of O(nm). More effective algorithms like Knuth-
Morris-Pratt and Boyer-Moore have been created to improve on 
this. By preprocessing the pattern and using heuristics, these 
algorithms avoid making unnecessary comparisons.  

B. Knuth-Morris-Pratt (KMP) Algorithm 
The KMP algorithm (created by Knuth, Morris, and Pratt in 

1977) is an effective linear-time string matching algorithm 
because it avoids repeated comparisons when there is a 
mismatch. Different to naive algorithms that maybe would re-
examine characters repeatedly to find the optimal shift, KMP 
uses information about the pattern that has been processed 
beforehand to find the optimal shift. 

1) Preprocessing: LPS Array 

The preprocessing step of creating the Longest Proper 
Prefix Suffix (LPS) array, also known as “border function” or 
“failure function”, is the core of the KMP algorithm. For a 
pattern P with length m, LPS[0..m-1] would store the length of 
the longest proper prefix from P[0..i], that is also a proper suffix 
of P[0..i]. A proper prefix is any prefix that is not the string 
itself, and same with a proper suffix. In simpler terms, the LPS 
array tells the algorithm how much of the matched prefix can 
be reused after a mismatch[1]. 

 
Fig 2.1. KMP Algorithm demonstration 

Source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/23-Pencocokan-string-(2025).pdf 

For example, if P = “ABABCA”: 

- LPS[0] = 0 (for ‘A’, no proper prefix/suffix) 
- LPS[1] = 0 (for ‘AB’) 
- LPS[2] = 1 (for ‘ABA’, ‘A’ is a proper prefix that is 

also a proper suffix) 
- LPS[3] = 2 (for ‘ABAB’, ‘AB’ is a proper prefix that is 

also a proper suffix) 
- LPS[4] = 0 (for ‘ABABC’) 
- LPS[5] = 1 (for ‘ABABCA’, ‘A’ is a proper prefix that 

is also a proper suffix) 

The table is constructed in O(m) time by iterating through 
the pattern and tracking the longest border (prefix = suffix) at 
each position. 

 
Fig 2.2. LPS Array preprocessing visualization 

Source: https://ds2-iiith.vlabs.ac.in/exp/kmp-
algorithm/preprocessing-of-kmp-algorithm/concept-and-

strategy-
preprocessing.html#:~:text=The%20preprocessing%20for%20

the%20KMP,is%20also%20a%20proper%20suffix. 

 

2) Searching  

Once the LPS Array has been created, the algorithm then 
starts the searching process. It uses two pointers, i to index text 
T (from 0 to n-1), and j to index pattern P (from 0 to m-1). The 
algorithm then compares T[i] and P[j]. If T[i] = P[j], both 
pointers are increased by one, this indicates the characters at 
those points match. If T[i] != P[j]: 

- If j = 0, No prefix of the pattern matches the current text 
segment. The text pointer i is simply incremented (i = 
i+1), and j remains 0. 

- If j != 0, The pattern pointer j is shifted backward to 
LPS[j−1]. This means we shift the pattern to align the 
longest proper prefix (which is also a suffix of 
P[0..j−1]) with the previously matched characters in the 
text. 

If j = m, we have found an occurrence of P. 

Because each character in the text is visited at most two 
times, the searching phase has a worst case time complexity of 
O(n). If preprocessing and searching is combined, the total time 
complexity of KMP algorithm is O(m+n). With its linear time 
guarantee and deterministic character, this algorithm is very 
reliable. Especially when the text has many repeating patterns. 

 

C. Boyer-Moore (BM) Algorithm 
The Boyer-Moore algorithm was introduced by Boyer and 

Moore in 1977 and was known for being very practical. Even 
beating KMP in average case scenarios. Guided by two strong 
heuristics, the bad character rule and the good suffix rule, its 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

strength lies in its ability to make large jumps (shifts) by 
comparing the pattern with the text from right to left. 

1) Bad Character Heuristic (BCH) 

The BCH table, which is an array with the size being the 
size of the alphabet used (A), holds the last occurrence of each 
character in the pattern. For every character c∈A, BCH[c] is the 
index for the rightmost occurrence of c in P, not including P[m-
1]. If c is not found in P, its value in the BCH table is typically 
set to -1. 

When T[i] and P[j] are mismatched (where j is the index in 
the pattern that caused the mismatch, scanning from right to 
left), the pattern is shifted to the right as much as max(1, j – 
BCH[T[i]]). This rule guarantees that the character T[i] that was 
mismatched is aligned with its last occurrence in pattern P, or if 
T[i] is not in P, the pattern is shifted past T[i]. The assumption 
is that any smaller shift would cause an immediate mismatch. 

For example, if P = “TATGTG”: 

- BCH[A] = 1, the last occurrence of A is at index 1 
- BCH[G] = 5, the last occurrence of G is at index 5 
- BCH[T] = 4, the last occurrence of T is at index 4 

 
Fig 2.3. BCH demonstration 

Source: https://www.geeksforgeeks.org/dsa/boyer-moore-
algorithm-for-pattern-searching/ 

2) Good Suffix Heuristic (GSH) 

The GSH aims to make shifts based on the matched suffix 
of the pattern that led to a mismatch. If a suffix P[j+1..m−1] of 
the pattern matches a corresponding segment in the text, but a 
mismatch occurs at P[j] (T[s+j] != P[j] where s is the current 
shift), the good suffix rule identifies the largest shift such that: 

- The matched suffix (or a part of it) in the text aligns 
with another occurrence of the same string within P. 

- If no such occurrence exists, the longest proper prefix 
of P that is also a suffix of the matched segment is 
found and aligned. 

 

 

Fig 2.4. GSH  demonstration 

Source: https://www.geeksforgeeks.org/dsa/boyer-moore-
algorithm-for-pattern-searching/ 

 

The computation of the good suffix shift table is more 
complex than BCH, typically involving arrays to store border 
information, and takes O(m) time. 

The preprocessing for Boyer-Moore takes O(m+A) time due 
to the construction of both heuristic tables. 

3) Searching 

While searching, the BM algorithm uses a pointer s for the 
current alignment of the pattern in the text (s represents the 
starting index of the pattern in the text). The algorithm aligns P 
with T[s..s + m – 1]. It then compares characters from right to 
left, starting from P[m - 1] and T[s + m - 1]. If a mismatch 
occurs at P[j] and T[s + j]: 

- Calculate the shift suggested by the Bad Character 
Heuristic: sBCH = j – BCH[T[s + j]] 

- Calculate the shift suggested by the Good Suffix 
Heuristic, sGSH, based on the matched suffix P[j + 1 .. 
m – 1]. 

- The pattern is then shifted to the right by max(sBCH, 
sGSH) 

The searching phase of Boyer-Moore has a worst-case time 
complexity of O(m+n) like KMP. But, because of its ability to 
make large shifts, especially in cases with large alphabets and 
different patterns, the average-case performance is much better 
and reaches sublinear time of O(n/m). 

D. The Influence of Character Distribution 
Even though the theoretical worst-case time complexity of 

both KMP and BM is O(m + n), the practical performance can 
be significantly different depending on the characteristics of the 
input text and pattern. An important factor, yet often under-
examined, is alphabet size in the text. 

1) Influence on KMP 

The internal pattern structure that is captured by the LPS 
array primarily dictates the KMP algorithms shift. This means 
that KMP’s performance relatively independent from the 
alphabet size of the text itself. The comparison amounts per 
character in the text is usually constant regardless if the text is 
uniform, highly repetitive, or complex. That said, a larger 
alphabet may reduce the number of mismatches when the 
pattern has less chance of aligning accidentally with the text. 
However, the algorithm's fundamental shift logic remains tied 
to the pattern's self-similarity, not the diversity of characters in 
the text. As such, KMP maintains consistent linear 
performance, even when operating over extremely small or 
large alphabets. 

2) Influence on BM 

Boyer-Moore on the other hand, is highly sensitive to 
alphabet size, especially through its Bad Character Heuristic[3]. 
A larger alphabet usually causes more frequent mismatches 

https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

with characters that rarely appear, which leads to bigger shifts 
and results in better average performance. 

For example, when a mismatch occurs on a character that 
does not appear in the pattern, the bad character heuristic would 
allow for shifts of the full pattern length. This is much more 
likely in a large alphabet, where most characters are unique or 
rare in the pattern. As a result, BM can skip large parts of the 
text and have a sublinear time complexity in the average case. 

But, in a smaller alphabet, like a binary string ({0,1}) or 
DNA sequence ({A,C,G,T}), the likelihood of finding a 
character that is in the pattern increases, which would decrease 
the size of the shift. In worst cases, like a text almost entirely 
made up of one character (‘aaaa…’), BM would only make 
minimal shifts, leading to a decrease in performance, almost to 
brute-force levels. 

Because the good suffix heuristic is based on the suffix 
structure of the pattern itself rather than the character values of 
the text, it would offer a more stable fallback. However, the 
overall efficiency of Boyer-Moore still strongly depends on the 
effectiveness of the bad character heuristic, which in turn is 
influenced by the size of the alphabet. 

III. METHODOLOGY 
This chapter explains the design of the experiment used to 

see how the size of the input alphabet affects the practical 
performance of KMP and BM algorithm. The goal of the 
experiment is to observe how increasing the number of unique 
characters in the text and pattern influences runtime and the 
number of comparisons for the two algorithms 

A. Variables and Metrics 
To precisely analyze the influence of alphabet size, we 

manipulated a set of independent variables while measuring 
specific dependent performance metrics. 

- Independent Variable:  
Alphabet size (|A|). This variable is the main variable 
that is being investigated.  

o ∣A∣=2 (a binary alphabet like {'0', '1'}) 
o ∣A∣=3 ({‘A’, ‘B’, ‘C’}) 
o ∣A∣=4 (a DNA-like alphabet like {'A', 'C', 'G', 

'T'}) 
o ∣A∣=8 ({'a'...'h'}) 
o ∣A∣=26 ({'a'...'z'}) 
o ∣A∣=62 (alphanumeric alphabet, {‘a-z’, ‘A-Z’, 

‘0-9’}) 
o ∣A∣=95 (all printable ASCII) 

Pattern length (m). This is also a primary independent 
variable. The test will consist of patterns of lengths: 
5,10,25, and 50 characters. 

- Controlled Variables: 
o Text length (n): 106 characters 
o Character distribution: uniform (all characters 

equally likely 
- Dependent Variables: 

o Execution time: measured in milliseconds 

Each combination of algorithm and alphabet size is tested 
multiple times (5 repetitions), and the results are averaged to 
reduce measurement noise. 

B. Data Generation Strategy 
Precise control over text and pattern generation was 

fundamental for isolating the effect of alphabet size. 

- Text and Pattern Generation: Text with 106 characters 
and  patterns of the specified lengths (5,10,25,50 
characters) is created for each alphabet size. Both are 
created by using characters that are uniformly selected 
from the active alphabet. For example, when testing |A| 
= 2, the text and pattern consists of only ‘0’ and ‘1’ with 
each having a probability of around 50% of showing. 
This ensures that all differences in performance is 
caused by the amount of characters available, not 
frequency. 

- Reproducibility: To make sure that all text and patterns 
created, even though random, can be replicated if 
needed for verification, a random number generator is 
seeded appropriately for every test. 

C. Algorithm Implementations 
A standard implementation of both KMP and Boyer-Moore, 

implemented in Python, is used for this experiment. The core 
logic for both algorithms is available and strictly follows the 
well-established theoretical principles, such as the LPS array 
for KMP and the bad character and good suffix heuristic for 
BM. The main component for this implementation is the 
addition to count accurately every character comparison that is 
done in the searching phase. This allows for the collection of 
performance data that is precise. 

IV. RESULTS 
Table 4.1 Data from experiment 

Pattern 
length 

(m) 

Alphabet size 
(|A|) 

AVG Runtime 

KMP (ms) BM (ms) 

5 

2 161.58 168.66 

3 146.69 105.06 

4 137.11 106.67 

8 120.70 74.83 

26 111.54 60.80 

62 110.61 59.99 

95 118.14 65.22 

10 

2 171.32 122.68 

3 150.94 83.45 

4 137.30 83.71 

8 123.65 49.05 

26 112.21 33.51 

62 112.23 31.63 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

95 113.75 30.78 

25 

2 161.37 80.26 

3 149.55 58.97 

4 138.32 64.65 

8 120.79 35.84 

26 111.59 17.77 

62 107.39 13.74 

95 106.95 12.97 

50 

2 157.39 59.81 

3 148.03 62.05 

4 139.17 52.62 

8 143.27 34.85 

26 111.53 12.77 

62 108.25 8.76 

95 108.21 7.59 

 

 
Fig 4.1 Graph of experiment data 

Source: Author 

The data presented in Table 4.1 and Figure 4.1 reveals a 
clear and distinct pattern in the average execution times for the 
KMP and Boyer-Moore algorithms across varying alphabet 
sizes and pattern lengths.  

For the KMP algorithm, average execution time remains 
remarkably consistent across the entire range of alphabet sizes 
for a given pattern length. For instance, with a pattern length of 
50, KMP's runtime varied from approximately 157.39 ms for a 
binary alphabet (|A|=2) to 108.21 ms for the printable ASCII 
alphabet (|A|=95). Similar stability is observed across other 
pattern lengths. For m=5, KMP's runtime ranged from 161.58 
ms (|A|=2) to 118.14 ms (|A|=95). These minor fluctuations 
indicate a performance profile that is largely independent of the 
number of unique characters in the alphabet. 

On the other hand, the Boyer-Moore algorithm consistently 
demonstrates a significant decrease in average execution time 
as the alphabet size increases, a trend clearly depicted by the 

steep downward-sloping dashed lines in Figure 4.1. The most 
substantial performance gains for Boyer-Moore are observed 
when transitioning from very small alphabets (|A|=2, 3, 4) to 
larger ones. For a pattern length of 50, Boyer-Moore's runtime 
drastically reduced from 59.81 ms (|A|=2) to a mere 7.59 ms 
(|A|=95). While significant improvements are seen across the 
board, the rate of performance enhancement for Boyer-Moore 
appears to become less pronounced for very large alphabet sizes 
(from |A|=62 to |A|=95), suggesting a point where additional 
alphabet expansion yields smaller gains in speed. 

A direct comparison between the two algorithms highlights 
their differing sensitivities to alphabet size. For the smallest 
alphabet size (|A|=2), Boyer-Moore generally exhibits a shorter 
execution time compared to KMP across all pattern lengths 
tested. For instance, at pattern length 50, KMP recorded 157.39 
ms while Boyer-Moore completed in 59.81 ms. As the alphabet 
size increases to 3 and beyond, Boyer-Moore consistently and 
increasingly outperforms KMP in terms of execution time. The 
magnitude of this performance advantage grows notably with 
both increasing alphabet size and increasing pattern length. For 
example, at a pattern length of 50 and for the printable ASCII 
alphabet (|A|=95), Boyer-Moore's runtime of 7.59 ms is 
substantially faster than KMP's 108.21 ms. 

V. ANALYSIS 

A. KMP Algorithm Performance 
Consistent data from the experiment shows that KMP 

algorithm has a relatively stable execution time in different 
alphabet sizes. The performance curve for KMP remains mostly 
flat, shown in Figure 4.1. With not so significant changes, for 
example in m = 50, variation from 157.39ms at |A|=2 to 
108.21ms at |A|=95. 

The stability shown goes inline with the fundamental theory 
of KMP. Its LPS array and deterministic shifting mechanism is 
the main factor in KMP’s efficiency. The preprocessing phase 
and searching phase are both linear in terms of pattern and text 
length (O(m) and O(n)). Most importantly, both of these phases 
are not dependent on alphabet size (|A|), other than requiring 
basic character equality comparisons. While larger alphabets 
statistically would cause less repetition in the pattern and text 
that is randomly generated, which could lead to less 
backtracking or internal pattern comparisons in the construction 
of LPS array, the main time complexity is still the same. Shifts 
in KMP are fundamentally based on pattern properties, rather 
than character characteristics that are mismatched. Because of 
that, KMP is tough against alphabet size changes. 

B. Boyer-Moore Algorithm Performance 
The performance of BM is very different from KMP. The 

data from the experiment shows that BM is very sensitive with 
alphabet size changes. The trend shows a significant 
improvement in performance with the increase of alphabet size, 
like shown by the dotted lines in Figure 4.1. 

The bad character heuristic for Boyer-Moore explains this 
phenomenon the best. BCH searches for the character that 
caused the mismatch (from the text) in a table that has been 
preprocessed from the pattern. The algorithm can make a large 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

shift if the mismatched character is not in the pattern or the last 
occurrence is far from the point of mismatch. 

Characters that repeatedly occur in the pattern or text 
because of a very small alphabet size increases the chance that 
the mismatched character will be found in the pattern, and often 
closer to the mismatch point. Because of that, one of the biggest 
benefits of Boyer-Moore decreases as there are more bad and 
small shifts. For example, when m=50, the runtime for |A|=2 is 
59.81 ms. BCH becomes very weak so the algorithm has to rely 
on the Good Suffix Heuristic more often. Even though its 
preprocess time is good (O(m)), GSH most often cannot give 
the same amount of large shifts as BCH. 

With the increase of alphabet size, the chance of a 
mismatched character not appearing in the text or appearing 
very rarely increases drastically. This allows for BCH to make 
much more larger shifts, avoiding a significant portion of the 
text. For m=50, the runtime decreases drastically from 59,81 ms 
(|A=2) to 7,59 ms (|A|=95). In practice, Boyer-Moore can reach 
its well know sublinear performance because of the large 
alphabet size. 

After a certain point, the benefits of increasing the size of 
alphabet becomes less apparent. This is shown by the flattening 
of BM’s performance curve at large alphabet sizes (|A|=62 and 
|A|=95). 

C. Comparison Analysis 
The comparative analysis of KMP and Boyer-Moore 

performance shows their suitability at different alphabet sizes. 

For the smallest alphabet size (Binary), KMP mostly shows 
an equal or better performance than BM for shorter patterns. 
For m=5, KMP is slightly better than BM at 161,58 ms. But 
even at this smallest alphabet, there is a tipping point. With an 
increase in pattern size (m=25 and m=50), BM becomes 
significantly faster. This shows that even with an inefficient 
BCH in a binary alphabet, the combined power of Boyer-
Moore's shifts (including the GSH) for longer patterns can still 
lead to better performance. 

For alphabet sizes of 3 or more, BM consistently 
outperforms KMP in runtime. The performance gap increases 
significantly as the alphabet size increases, showing a clear 
advantage in this matter. For example, BM is 14 times faster 
than KMP at m=50 and |A| = 95 (108.21 ms and 7.59 ms). 

According to this analysis, even though KMP offers a 
predictable and stable linear-time performance independent 
from alphabet size, the practical efficiency of BM is very 
dependent on an alphabet size big enough to fully take 
advantage of its bad character heuristic. The tipping point 
where Boyer-Moore becomes a better choice shifts towards 
smaller alphabet sizes as the pattern size increases, showing that 
longer pattern sizes allow Boyer-Moore to get an advantage 
even though its bad character heuristic is limited by the alphabet 
size. 

VI. CONCLUSION 
This study shows how alphabet sizes affect the efficiency of 

string matching algorithms KMP and Boyer-Moore. The 
performance of KMP is largely stable and not affected by 
alphabet size, showing its deterministic shifting purely based on 
pattern repetition. However, Boyer-Moore quickly establishes a 
significant performance advantage in very limited alphabets 
(such as binary), although KMP can be competitive or slightly 
faster in very short patterns, but the efficiency of Boyer-Moore 
is highly dependent on the alphabet size, showing significant 
performance improvements as the alphabet grows, mainly due 
to the increased effectiveness of its Bad Character Heuristic. 
These results demonstrate that the characteristics of the input 
alphabet are critical when selecting the best string matching 
algorithm for a given application. 

 

REFERENCES 
[1] Knuth, Donald Ervin, James H. Morris and Vaughan R. Pratt. “Fast 

Pattern Matching in Strings.” SIAM J. Comput. 6 (1977): 323-350. 
[2] SaiKrishna, Vidya, Akhtar Rasool, and Nilay Khare. "String matching 

and its applications in diversified fields." International Journal of 
Computer Science Issues (IJCSI) 9, no. 1 (2012): 219. 

[3] Robert S. Boyer and J. Strother Moore. 1977. A fast string searching 
algorithm. Commun. ACM 20, 10 (Oct. 1977), 762–772. 

 
 

PERNYATAAN 
Dengan ini saya menyatakan bahwa makalah yang saya tulis 

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 
dari makalah orang lain, dan bukan plagiasi. 

 

Bandung, 24 Juni 2025 

 
Sakti Bimasena – 13523053 

    

 

 
 
 
 

 


